
The Black Rain
by J. Simon van der Walt

for amplified string quintet
with live computer processing

The Black Rain

Composer’s note

‘When the last trace of the rocket’s presence, a whitish haze, had been
absorbed by the atmosphere, when the wandering sandy waves
gradually began to cover up the naked rock of the ground, at the same
time filling in the deserted digging spaces – only then, much later, did a
dark cloud gather in the west. Hovering low above the ground it pushed
closer, grew, encircled the landing area with a threatening arm. There it
remained, motionless.

As the sun was about to set, a black rain fell on the desert.’

‘The Black Rain’ takes its title from the first chapter of Stanis!aw Lem’s 1967 science
fiction novel ‘The Invincible’, in which a mighty spaceship and her crew are overcome by
a race of microscopic mechanical flies, individually insignificant, but capable of joining
together into a vast quasi-intelligent ‘cloud’: surely one of the first fictional works to
speculate on the possibilities of nanotechnology, calling to mind such devices as the
nanostats which inhabit Neal Stephenson’s 1995 novel ‘The Diamond Age’, and the
EDust, or Everything Dust, in Iain M. Banks 2000 ‘Look to Windward’.

Aesthetically, ‘The Black Rain’ carries forward the composer’s ongoing reconstruction of
the career of his fictional alter ego Edward ‘Teddy’ Edwards. Something like:

‘In 1959, Edwards created a work for string quartet (or quintet?) and five
(or four?) taperecorders, incorporating radio equipment borrowed from
Aldermaston, where he was at the time employed as an engineer on the
ill-fated Blue Streak missile system. Working from his original sketches, I
have replicated the piece using the music programming language
SuperCollider, with the addition of a reconstructed lost (?) part for
double bass.’

In terms of musical devices, ‘The Black Rain’ represents, through self-quotation, a
critique of a group earlier works of mine (‘smir’, ‘4thought’, ‘5lipside’ etc), all of which
float angular melodies across polymetric rhythmic frameworks, usually according to some
quartal scheme, and usually, it would seem, in roughly the same key.

Performance instructions

‘The Black Rain’ comprises two sections for the strings, both of which are accompanied
by material from the computer, and a brief coda in the form of a recording of the
composer’s spoken voice.

The first half of the piece is aleatoric in conception and minimalist in style. It is composed
of two kinds of gesture – repeated notes and soaring phrases – from which the players
make choices during the course of the piece. Each player should play mostly repeated
notes, with occasional diversions to play any one or two of the soaring phrases. Ideally,
no more than two soaring phrases should be heard at any one time, but always complete
a phrase once you have started it. Soaring phrases need not start together, and will thus
usually overlap in a quasi canonic fashion. However, if two players happen to catch each
other’s eye and start playing (the same or different) soaring phrases together, that would
be fine also.

Rhythmic variation must be introduced. Repeated notes are usually played in quavers at
crotchet = 140 as notated. However, occasionally, an individual player may choose for a
period to play in a different relationship to the underlying pulse, as shown:

Soaring phrases should seldom be played in crotchets as written, but usually in some
other metrical relationship:

The performance of this first section will be greatly complicated by the contribution of the
computer, which is intentionally rather louder than the players themselves. Each player’s
material is subject to further rhythmic variation, by means of a slicing algorithm
implemented in SuperCollider. The speed at which this slicing occurs goes through a
sequence of tempo glissandi, departing from and returning to the basic crotchet = 140.
The players must strive to keep a sense of this tempo among themselves, even when
playing in a different metrical relationship. Furthermore, particularly when playing
repeated notes, the players must not allow themselves to be seduced by the computer
into making their own gradual changes of tempo. Always switch cleanly to a new metrical
relationship with the underlying pulse.

After approximately four minutes, the computer will abruptly initiate the second section of
the piece, which is built around the composer’s waltz ‘Slipping Away’. At this point, all
players immediately stop what they are doing, in the middle of a phrase if need be, and
turn to the waltz music. Play the given sequence of chromatically descending variations
exactly as written, ignoring as best you can the occasional interjections (in the wrong
key!) of the same material by the computer.

After a further three minutes (approximately), a recording of the composer’s voice will be
heard. Complete the variation you are on, plus one more, ending inconclusively at the
fermata. Wait for the recording of the composer's voice to finish: the piece ends with the
sound of a computer spacebar being hit.

The Patch

The Black Rain utilises the file theblackrain.rtf authored in the music programming
language SuperCollider. This patch is fully self-documented, and comes complete with
the necessary dependencies: two audio files, and redFrik’s extTempoClock.sc extension
to TempoClock. It has been tested on SuperCollider 3.5 under Mac OS X 10.6.8.

Briefly: two audio files are loaded into buffers, these being a synthesised version of
Slipping Away and a recording of the composer’s voice. Seven Synths are defined:

\patbuf is used to slice the recorded version of Slipping Away, \playthrough does what it
says, and five synths \yap0 - \yap4 are used to chop the live audio from the five
instruments.

In the first section of the piece, five TempoClocks are established. The incoming audio is
chopped at five different tempi, which undergo a series of metric modulations sequenced
in a Routine. In the second section of the piece, two Pbinds are used to introduce random
slices of a synthesised version of Slipping Away.

Each string player must be individually close miked, ideally with miniature clip-ons. Five
channels of audio are routed into SuperCollider, and five channels of audio are returned,
one for each instrument. These should ideally be routed to five individual speakers
located adjacent to or behind each player: alternatively, they may be panned across a
stereo or multi-channel image to correspond roughly to the position of the players.

Duration

Approximately 8 mins.

JSVDW
Glasgow

31/03/2012

// setup and testing
s.quit;
Server.local.options.device = "JackRouter";
s.boot;
// Server.killAll;
// s.meter;
().play;
// evil tritone metronome
(
Pbind(\midinote, Pseq([90,84,84,84],inf),

\legato, 0.005,
).play(TempoClock(140/60));
)

////////////////////// initialise, ready to go

(

{
~slipbuf = Buffer.read(s, Document.current.dir.asString++"/
slippingsynth5ch.aiff");
0.5.wait;
~outrobuf = Buffer.read(s, Document.current.dir.asString++"/outro.aif");
0.5.wait;
}.fork(AppClock);

// ~slipbuf.play;
// ~outrobuf.play;

SynthDef(\patbuf, {
| freq, slices=16, slice=16, gate=1, pan=0, buf, gain=0.5 |
var env, start, len, sig, rate, splay;
rate = freq/(60.midicps);
len = BufFrames.kr(buf);
start = (len / slices * slice);
sig = PlayBuf.ar(5, buf, BufRateScale.kr(buf) * rate, startPos: start,

loop: 1);
splay = Splay.ar(sig, 0.7);
env = Linen.kr(gate, attackTime: 0.5, releaseTime: 0.5, doneAction: 2);
// Out.ar(0, [sig[0],sig[4]] * env * gain) //choose channels to play

0-4
Out.ar(0, sig * env * gain) // five channel
// Out.ar(0, splay * env * gain) // for stereo testing

}).add;

a=SynthDef(\playthrough, {| inputs=#[0,1,2,3,4], through=0.5 |
var sig = SoundIn.ar(inputs);
Out.ar(0, sig * through) // five channel
// Out.ar(0, (Splay.ar(sig) * through)) // stereo testing

}).play;

//a.set(\through, 0.5);
//a.set(\through, 0.0);
//a.set(\through, 0.2); // set this lower down the page

SynthDef(\yap0, {
| input=0, gate=1, thru=0 |
var livesound, env, ad=0.05, pan;
livesound = SoundIn.ar(input);
env = EnvGen.kr(Env.asr(ad,1.0,ad,'linear'), gate, doneAction:

2);
Out.ar(0, (livesound * env * thru)) //channel 0
// Out.ar(0, Pan2.ar((livesound * env * thru),-1)) //panned

}).add;

SynthDef(\yap1, {
| input=1, gate=1, thru=0 |
var livesound, env, ad=0.05;
livesound = SoundIn.ar(input);
env = EnvGen.kr(Env.asr(ad,1.0,ad,'linear'), gate, doneAction:

2);
Out.ar(1, (livesound * env * thru)) //channel 1
// Out.ar(0, Pan2.ar((livesound * env * thru),-0.5)) //panned

}).add;

SynthDef(\yap2, {
| input=2, gate=1, thru=0 |
var livesound, env, ad=0.05;
livesound = SoundIn.ar(input);
env = EnvGen.kr(Env.asr(ad,1.0,ad,'linear'), gate, doneAction:

2);
Out.ar(2, (livesound * env * thru)) //channel 1
// Out.ar(0, Pan2.ar((livesound * env * thru),0)) //panned

}).add;

SynthDef(\yap3, {
| input=3, gate=1, thru=0 |
var livesound, env, ad=0.05;
livesound = SoundIn.ar(input);
env = EnvGen.kr(Env.asr(ad,1.0,ad,'linear'), gate, doneAction:

2);
Out.ar(3, (livesound * env * thru)) //channel 1
// Out.ar(0, Pan2.ar((livesound * env * thru),0.5)) //panned

}).add;

SynthDef(\yap4, {
| input=4, gate=1, thru=0 |
var livesound, env, ad=0.05;
livesound = SoundIn.ar(input);
env = EnvGen.kr(Env.asr(ad,1.0,ad,'linear'), gate, doneAction:

2);
Out.ar(4, (livesound * env * thru)) //channel 1

// Out.ar(0, Pan2.ar((livesound * env * thru),1)) //panned
}).add;

)

// go! - on leader's downbeat
(

a.set(\through, 0.2); // maybe

{
t=TempoClock(140/60);
~tsyn = PmonoArtic(\yap0,

\thru, Pser([1,0],inf),
\dur, 0.5,
\legato, 0.2

).play(t);
~start = t.seconds;

u=TempoClock(140/60);
~usyn = PmonoArtic(\yap1,

\thru, Pser([1,0],inf),
\dur, 0.5

).play(u);

v=TempoClock(140/60);
~vsyn = PmonoArtic(\yap2,

\thru, Pser([1,0],inf),
\dur, 0.5

).play(v);

w=TempoClock(140/60);
~wsyn = PmonoArtic(\yap3,

\thru, Pser([1,0],inf),
\dur, 0.5

).play(w);

x=TempoClock(140/60);
~xsyn = PmonoArtic(\yap4,

\thru, Pser([1,0],inf),
\dur, 0.5

).play(x);

t.sched(t.timeToNextBeat, {t.sync((140/60)*(3/2), 8); nil});
9.wait;
("01 "++(t.seconds - ~start).asString).postln;
u.sched(u.timeToNextBeat, {u.sync((140/60)*(2/3), 8); nil});
9.wait;
("02 "++(t.seconds - ~start).asString).postln;
v.sched(v.timeToNextBeat, {v.sync((140/60)*(4/3), 8); nil});

9.wait;
("03 "++(t.seconds - ~start).asString).postln;
w.sched(w.timeToNextBeat, {w.sync((140/60)*(3/4), 8); nil});
9.wait;
("04 "++(t.seconds - ~start).asString).postln;
x.sched(x.timeToNextBeat, {x.sync((140/60)*(5/3), 8); nil});
9.wait;
("05 "++(t.seconds - ~start).asString).postln;
t.sched(t.timeToNextBeat, {t.sync((140/60)*(4/5), 8); nil});
9.wait;
("06 "++(t.seconds - ~start).asString).postln;
u.sched(u.timeToNextBeat, {u.sync((140/60)*(3/2), 8); nil});
9.wait;
("07 "++(t.seconds - ~start).asString).postln;
v.sched(v.timeToNextBeat, {v.sync((140/60)*(2/3), 8); nil});
9.wait;
("08 "++(t.seconds - ~start).asString).postln;
w.sched(w.timeToNextBeat, {w.sync((140/60)*(4/3), 8); nil});
9.wait;
("09 "++(t.seconds - ~start).asString).postln;
x.sched(x.timeToNextBeat, {x.sync((140/60)*(3/4), 8); nil});
9.wait;
("10 "++(t.seconds - ~start).asString).postln;
t.sched(t.timeToNextBeat, {t.sync((140/60)*(5/3), 8); nil});
9.wait;
("11 "++(t.seconds - ~start).asString).postln;
u.sched(u.timeToNextBeat, {u.sync((140/60)*(4/5), 8); nil});
9.wait;
("12 "++(t.seconds - ~start).asString).postln;
v.sched(v.timeToNextBeat, {v.sync((140/60)*(3/4), 8); nil});
9.wait;
("13 "++(t.seconds - ~start).asString).postln;
w.sched(w.timeToNextBeat, {w.sync((140/60)*(5/3), 8); nil});
9.wait;
("14 "++(t.seconds - ~start).asString).postln;
x.sched(x.timeToNextBeat, {x.sync((140/60)*(4/5), 8); nil});
9.wait;
("15 "++(t.seconds - ~start).asString).postln;
t.sched(t.timeToNextBeat, {t.sync((140/60)*(1), 8); nil});
u.sched(u.timeToNextBeat, {u.sync((140/60)*(1), 9); nil});
v.sched(v.timeToNextBeat, {v.sync((140/60)*(1), 10); nil});
w.sched(w.timeToNextBeat, {w.sync((140/60)*(1), 11); nil});
x.sched(x.timeToNextBeat, {x.sync((140/60)*(1), 12); nil});
60.wait;
("16 "++(t.seconds - ~start).asString).postln;
t.sched(t.timeToNextBeat, {t.sync((140/60)*(3/2), 8); nil});
u.sched(u.timeToNextBeat, {u.sync((140/60)*(2/3), 8); nil});
v.sched(v.timeToNextBeat, {v.sync((140/60)*(4/3), 8); nil});
w.sched(w.timeToNextBeat, {w.sync((140/60)*(3/4), 8); nil});
x.sched(x.timeToNextBeat, {x.sync((140/60)*(5/3), 8); nil});
20.wait;
("17 "++(t.seconds - ~start).asString).postln;

t.sched(t.timeToNextBeat, {t.sync((140/60)*(1), 3); nil});
u.sched(u.timeToNextBeat, {u.sync((140/60)*(1), 5); nil});
v.sched(v.timeToNextBeat, {v.sync((140/60)*(1), 6); nil});
w.sched(w.timeToNextBeat, {w.sync((140/60)*(1), 7); nil});
x.sched(x.timeToNextBeat, {x.sync((140/60)*(1), 8); nil});
20.wait;
("18 "++(t.seconds - ~start).asString).postln;

~tsyn.stop;
~usyn.stop;
~vsyn.stop;
~wsyn.stop;
~xsyn.stop;

j=TempoClock(30/60);

Pbind(\instrument, \patbuf,
\buf, ~slipbuf,
\slice, Prand((1..16), 1), // just one random slice
\dur, 10
).trace.play(j);

4.wait;
a.set(\through, 0.5); //maybe
4.wait;

// made subsequent interjections quieter

Pbind(\instrument, \patbuf,
\buf, ~slipbuf,
\slice, Pxrand((1..16), inf), // now inf
\dur, Pseq((10..1).mirror, inf),
\legato, Pseq((1..10).mirror/10, 1),
\gain, 0.2
).trace.play(j);

180.wait;
("outro "++(t.seconds - ~start).asString).postln;

{Out.ar(0, ((PlayBuf.ar(1, ~outrobuf))* 0.4) ! 5)}.play; // outro 5ch

// mute string playthrough and free buffers for tidy
56.wait;
a.set(\through, 0.0);
~slipbuf.free;
~outrobuf.free;
}.fork;
)

